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In [1] the problem of the constriction of the optimal form of shielding
(in the sense of minimum weight) for the monoenergetic y-radiation

of linear, disc and cylindrical sources was considered. Below, for-the
same source geometries, the problem of optimal form of shielding is
solved for the case of polychromatic radiation. As in [1], radiation
scattering in the environment is neglected, and the sources are assumed
to radiate isotropically, Multiple scattering in the shielding is taken
into accoumt by using an analytical expression for the build-up factor.

1. Consider first a line source, The energy flux of
v-quanta at a point 0 (see Fig. 1) distant h from the
line source of length 2r, and specific intensity S is [2]

@ ]

S - '
K =20 YnEBioxp (— wa)dp. (L1

0 i=i

Here x is the shield thickness and By is the energy
build-up factor, taking account of multiple y-ray scat-
tering in the shield. We use an analytical expression
for the energy build-up factor in the form [3]

B =4, exp (—opuz) + 4, 0xp (—opa).  (1.2)

Here A4, A, o4, @, are numerical coefficients, Sub-
stituting in (1.1) and putting p' = pi (1 4 o) and "=
= i ( + i), '
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Here j is the number of lines in the y-spectrum,
n; is the yield of y-quanta of given energy Ej per nu-
clear decay, and uj is the y-ray attenuation coefficient
in the material, The weight of shielding, assuming
X < R, is
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(1.4)

where h is the distance from the shielded point 0 to the
center of the source, p is the density of the shielding
material, and t is the longitudinal dimension of the
shield.

The problem is to determine the form of shielding
which provides a given energy flux at the shielded
point, K = K,, with minimal mass G. We transform
to dimensionless variables
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The absorption coefficient p corresponds o the energy
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The integrals (1.3) and (1.4) may be expressed in
the variables (1.5) as
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+ Ay exp (— M’C)];Z—i = {secQ, (L.7)
with boundary conditions
% (0) =0, % (p) =0
20) =0  O<p<Yam). (1.8)

We formulate the variational problem in the follow-
ing way (cf. [1]): for the system (1.7) in a class of
piecewise-continuous functions there is found a con-
trol parameter £(¢)= 0, which gives a minimum
finite value of the coordinate g(¢, ) and satisfies the bound-
ary conditions (1.8). The formulated variational prob-
lem will be solved using the method of L. S, Pontrya-
gin [4]. We write the Hamiltonian
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H = py 2ynvi [Ay exp (— M) +
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+ Agi exp (— MT)] + pol sec @,
where the momenta py and pg are constants since

(1.9)
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According to [4], the momentum bg, corresponding
to the minimized coordinate, may be put equal to —1
and py to some constant p,. Then

H = py 29: (5) — L sec @, i () =
. i=1
= nv; [4y exp (—MT)+ Amexp (—AT)]  (1.11)

On the basis of the maximum principle, the optimal
control ¢(p) = 0 must give the absolute maximum of
the function H [see (1.11)]. From analysis of the equa-
tion for the partial derivative
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it follows that on those intervals where
Po (0 +- .- 415 (O] > —secq,
the maximum of H is reached for ¢ =0, If
Polmi (@) +... +19,OI< - sec ¢,

then Z(ga) is determined from the condition 8H/8¢ = 0,

Dol (D 4. +1,(D] +secp =0, (1.12)
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We denote the solution of (1.12) by ¢§(¢). The opti-
mal form of shielding is then determined by the equa-
tions

Lo (@)
(e = { 0

P = po Em(O) = po an M Ay - AAy). (1.183)
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for cos @ — 1/ po

>
R (o <),
or cosq><——1/po’

If cos g, << — 1/ py’, then the optimal control ¢ () in-
cludes both parts of (1.13), The values of p[; (or py)
are determined from (1,12) with the condition ¢ (¢x) =
=0

€os ¢

;o . Sec Qg
Po == — 8€C Qg, for Do — - m) . (1. 14)
Substituting in (1.12), we get
7 j
E () =8P 2 (1.15)

and the optimal control £ (¢) will be determined by

)_{Co(w) for 0< <o,

for e. <o< o’ (1.16)

Here £4(p) is the solution of (1.15),

Equation (1,16) is valid within the y-quantum en-
ergy flux range
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If », is less than (1.17), i.e
Do J
0<% < § S (®) do, (1.18)

n i==1

then the thickness of shielding is everywhere greater
than zero (¢, > @,)- In this case p; is determined. We
rewrite (1.12)

A (B =1,

— pocose I (D) - (1.19)

Then, taking account of (1,19), the first solution of
(1.7) may be written
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We determine the constant p, from (1.20) and substi-
tute it in (1.12)

Do

3
#0005 D1 (L) = | cos @ S Sin (0 do.
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(1.21)

Solving (1.21) with reference to (), the optimal form
of the shield is obtained, The weight of the shield is
found by integrating the second equation of (1.7). For
this purpose, () is substituted from (1.16) in the
interval (1.17) and from (1.21) in the interval (1.18).

Fig. 2

2. Turning to the case of a disc source, the energy
flux of y-quanta at point 0 (see Fig. 2) is determined

by [2]:
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[the form of function ¥(¢) is as in (1.11)]. The weight
of shielding G on the assumption x « R is

@0
7= 2nh2pg tg @ sec Qadp

0

(2.2)

Here h is the distance from the shielded point O to the
center of the source, p is the density of the shielding
material, and I" is the surface intensity of the disc
source.

The dimensionless variables are as in (1.5) with
the exception of » and g, which are now

2K Gp

TE R = "2ty ° 2.3)

W o=
As in the case of a line source, the integrals (2.1)
and (2.2) are expressed in the dimensionless variables
(1.5) and (2, 3) as the system

. @2.4)
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=g Q%) 98— 1g @ sec gL .
i=1
The boundary conditions are as in (1.8),
According to the maximum principle, the optimal
control, ¢(¢)= 0, must give an absolute maximum of
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the function

H =tgo{po () +. - +% (D] — Lsecql. 2.5)

Since the further argument is analogous to that giveﬁ
above for a line source, we shall restrict ourselves
to the expression of the end results.
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Fig. 3

The solution for a disc source agrees completely
with (1.16). Integration of the first equation in (2.4)
gives

%tgq) 2‘91

i=1

) o+ (In 55 2e). an (2.6)
The solution for a disc source (1.16) is valid over the
range of flux

, Stgcp Zmpz ©) do < o < (In sec o) Dmevi. @.7)
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As an example, Fig. 3 shows a graph of the depen-
dence of @4 on %, for the Co® y-gpectrum (with a
lead shield). As in (1.21), we obtain

Ko €0 @ Zm ) = Ssmq) sz ) Zm ©) do, @.8)

i=1 . i=1 i=1

the solution of which ¢(¢) is valid in the interval

©p

Stgfp Z\Pt () do.
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The weight of shielding is determined in the same
way as for a line source. Figure 4 shows a graph of
gy (1) for fixed values of ¢, for the Co® y-spectrum
(with a lead shield). The broken curve, for ¢4 = ¢,
separates regions (2.7) and (2.9).

3, We now find the optimal form of shielding for
a cylindrical source, With self-absorption, the en-
ergy flux of y-quanta at point O (see Fig. 5) from a
cylindrical source is [5]
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{cont'd.)

Here vy is the volume intensity of the source, and the
indices € and T refer respectively to source and

shield,
To take account of multiple scattering in the shield,

as above, we use an analytical expression for the en-
ergy build-up factor

B = A1 exp (— aPpsz) + As'? exp (— a2} (3.2)

Substituting (3.2) in (3.1), we get
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Vi (2) = mBi T4y exp (— poi'z) + Ax® exp (— py"z)],

Po' = Pa (1 + au?), o’ = ps (1 4 0u®)(3.3)

The weight of the shield is as in (2.2). The dimension-
less variables for a disc source are still valid for a
cylindrical source, except that for », the volume in-
tensity y replaces the surface intensity I'. Then (3. 3)
takes the form
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In (2.4) the first equation, in correspondence with

(3.4), has the form

dw . fi(@ for O< fP CPk ,
—dcp—,f()sm(p, 1O =@ for o< ®<n
1Pﬂ ©)
f 2 [1 — exp (— peaid scc )], (3.5)
i=1
j
b (0) BT
fo (@) = 21— {1—~9Xp[— g (1 —tgwelg %)}
==l e

and the second equation is unchanged, The optimal
control ¢(¢) is found from the condition of absolute
maximum (see [1])

for 0<e<g; (3.6)
for ¢, <o<q. (8.7)

H™ =1tg ¢ (pof1 (9) cos @ — [ sec q)
H™ =1g ¢ (pof; (@) cos g — { sec ¢)

For the first interval (0 << o < ¢x)
M. (©)

2
Do COS @ E -
i=1

— eip (— Peib sec @)] +-secp = 0, (3.8)

Wwith the solution of (3. 8) written as g(;((p), the optimal
form of shielding is given by

’ f Y(p)>—1/po
£ (g) — {Co (p) Ior () | p (Po < 0)

for ¥@<—1/p
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[1 — eXp (— HElb sec (P)]
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N (§) = nivi (A’ Au™ exp (— Ag'D) 4

Mei” A9 exp (— Ay"D)].

The constant p; is obtained from (3. 8) on the basis of
the condition ¢(@%) = 0

1

Po =~ ¥ign - (3.10)
Substituting (3.10) in (3.8), we get
9 Nei (C)
cos® @ Z [1 — exp (— pubsec @) = ¥ (9,). (3.11)

Let the solution of (3.11) be £,(¢), then for (0 = ¢ =
=< k) the optimal control ¢(¢) is

for 0 << o< s

o (9) 3 12
:{0 for ¢. < cp<q>o ©.12)
The energy flux of y-quanta is given by *
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*Here & (x) is King's function, tabulated in [6, T7].

This integral does not exist in finite form. However,
in [5] the integral

x

X (9r, @) = Ssiu @ oxp [—« o (1 — tg potg cpo)] do

sin @
0

was tabulated for a series of values of {(ugry), ¢k, ¢;.

Fig. 5

The corresponding differences from this table permit
the evaluation of the integral X,,,s, in (3.13) since

-§- i

Equation (3.12) is valid over the range
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i=s] £i

— cos @y [1 — @ (Ue,d see @]} -

i

Z

For the second interval (¢r << ¢ < ¢,) based on the
analysis of the function ut (3.7), the expression

[cos Py — CO8 §, — X;;h @, (V«u" ) (314)

j
Po €08 @ }l nt};ic) {1 —

= (3.15)

I‘Lal 0

\
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is obtained.
Denoting the solution of (3.15) as §;((p), the opti-
mal form of shielding for (@r < @ < @) ig

L for T@)>—1/p
C((P)*—’{ 0 for T ()< —1/pq (8, < 0)
0
T (¢) = cos? @ EM@ .

Beilo 3.16
— exp|— (1 —tggoig 90} (3.16)

d i ©

0T () < cos® ¢ X, 11—

i=1

— exp (— pubsec g;)] for ¢, <o <o,

Since at ¢ = ¢), T(¢@) vanishes, the intersection
¢ = @, always lies in the interval [0, ¢] and the
peripheral regions always remain unshielded.
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As above, p, is determined from the condition
Z(®x) = 0. On this basis, Eq. (3.15) gives

1

POZ*W' (3.17)

Substituting from (3.17) in (3.8) and (3.15), we get

,. ,
cost Y 18 (1 —exp (—pbsec o) =T (9,), (3.18)
i=1

]
w0

i=1

MeiTo
— exp [— si;q) (1—tg¢ctg¢0)]}=T(¢*). (3.19)

The optimal form of shielding for (0 = ¢ = @) is
(6(®) for OSP<SP
L(p) = (@) for @, <e<os
0  for ¢+<O<%o,
where Zy(@) and ¢,(¢) are the solutions of (3.18) and
(3.19).
Equation (3.20) is valid in the y-quanta energy
flux interval

(3.20)

Pk

0< o< § 12 (@) simodp +

]

(3.21)

d nY;
+ Z " [cos @ — cos Qg — Xy, o0 (Heil0)] -
i=1 ¢

1

The weight of the optimal shield is determined by
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integrating the second equation in (2.4). £(¢} is sub-
stituted from (3.12) on the interval (3.14), and from
(3.20) on the interval (3.21).
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